2025
Münchmeyer, J., Frank, W., Giffard-Roisin, S., Marsan, D., Socquet, A. (2025). Detecting and characterizing slow earthquakes with deep learning on seismic data. JpGU 2025, virtual presentation. [invited]
Münchmeyer, J., Molina, D., Marsan, D., Langlais, M., Baez, J.-C., Heit, B., Moreno, M., Tilmann, F., Lange, D., Socquet, A. (2025). Characterising the Northern Chile subduction zone (24⁰S - 31⁰S) with > 165,000 earthquakes. EGU General Assembly 2025, Vienna, Austria.
Gardonio, B., Socquet, A., Münchmeyer, J. (2025). The spatio-temporal behavior of the Mantle Wedge Seismicity and its relationship with the interface in Chile. EGU General Assembly 2025, Vienna, Austria.
Chalumeau, C., Sanchez-Reyes, H., Chevrot, S., Lovery, B., Villegas, J.-C., Gonzales, A., Langlais, M., Norabuena, E., Münchmeyer, J., Monteiller, V., Kan, L., Tavera, H., Socquet, A. (2025). Deep-shallow interactions in the 2024 Acari sequence (South Peru). EGU General Assembly 2025, Vienna, Austria.
2024
Münchmeyer, J. (2024). Opportunities, challenges and limitations of large-scale earthquake catalogs. AGU Fall Meeting 2024, Washington DC, USA. [invited]
Münchmeyer, J., Molina, D., Marsan, D., Langlais, M., Baez, J.-C., Heit, B., Tassara, A., Moreno, M., Tilmann, F., Lange, D., Socquet, A. (2024). Characterising the fine-structure of the Northern Chile subduction zone (24⁰S - 31⁰S) with > 160,000 earthquakes. AGU Fall Meeting 2024, Washington DC, USA.
Münchmeyer, J., Frank, W., Giffard-Roisin, S., Marsan, D. & Socquet, A. (2024). A comprehensive search for low-frequency earthquakes and tectonic tremor along the Northern Chile subduction zone (24⁰S - 31⁰S). AGU Fall Meeting 2024, Washington DC, USA.
Socquet, A., Molina, D.,
Münchmeyer, J., Radiguet, M., Doin, M.-P., Marsan, D., Vezinet, A., Moreno, M., Baez, J.-C., Ortega, F., Tassara, A. and Soto, N. (2024). Deep and shallow slow slip events imaged by GNSS and seismicity in Copiapo ridge, Chile : kinematics and segmentation driven by interactions between fluids and subducted seamounts. AGU Fall Meeting 2024, Washington DC, USA.
Chalumeau, C., Chevrot, S., Sanchez Reyes, H., Lovery, B., Villegas, J., Münchmeyer, J., Monteiller, V., Kan, L.-Y., Tavera, H., Socquet, A. (2024). Structure and seismicity of the Southern Peru subduction zone. AGU Fall Meeting 2024, Washington DC, USA.
Puente, J., Münchmeyer, J., Sippl, C., McBrearty, I. (2024). Turning Picks into Events: Evaluating Seismic Phase Associators. AGU Fall Meeting 2024, Washington DC, USA.
Münchmeyer, J., Giffard-Roisin, S., Malfante, M., Marsan, D. & Socquet, A. (2024). Identifying uncataloged low-frequency earthquake sources with deep learning. EGU General Assembly 2024, Vienna, Austria.
Isken, M., Dahm, T., Heimann, S., Münchmeyer, J., Cesca, S. & Niemz, P. (2024). Advancing Seismic Event Detection: Integrating Machine Learning with Waveform-Stacking Techniques. EGU General Assembly 2024, Vienna, Austria.
Chouli, A., Costes, L., Marsan, D., Münchmeyer, J., Giffard-Roisin, S. & Socquet, A. (2024). Search for repeaters in the central part of the Chilean subduction zone. EGU General Assembly 2024, Vienna, Austria.
Molina, D., Münchmeyer, J., Radiguet, M., Socquet, A. & Doin, M. (2024). Structural control on aseismic and seismic slip interactions during the 2020 SSE in the Atacama region, Chile. EGU General Assembly 2024, Vienna, Austria.
Puente, J., Münchmeyer, J., McBrearty, I. & Sippl, C. (2024). Benchmarking seismic phase associators: Insights from synthetic scenarios. EGU General Assembly 2024, Vienna, Austria.
2023
Münchmeyer, J. (2023). PyOcto: A high-throughput seismic phase associator. AGU Fall Meeting 2023, San Francisco, USA.
Münchmeyer, J., Giffard-Roisin, S., Malfante, M., Marsan, D., & Socquet, A. (2023). Detecting low-frequency earthquakes with deep learning. AGU Fall Meeting 2023, San Francisco, USA. (Poster)
Münchmeyer, J. (2023). Opportunities and limitations of deep learning for earthquake monitoring. National Academies, Committee of Solid Earth Geophysics, Artificial Intelligence and Machine Learning in Geophysics: Are We Beyond the Black Box? [invited]
[recording]
Saul, J., Bornstein, T., Tilmann, F., Münchmeyer, J. (2023). Deep-learning-based phase picking in SeisComP using SeisBench. IUGG, Berlin, Germany.
Isken, M., Reiss, M., Cesca, S., Hensch, M., Schmidt, B., Dahm, T., Münchmeyer, J. (2023). Eifel Large-N Experiment: Detection and Localization of Seismic Events using Stacking and Migration Approach combined with Neural Network Phase Characterization. IUGG, Berlin, Germany.
Münchmeyer, J., Tilmann, F., Saul, J. (2023). Constraining earthquake depth at teleseismic distance: Picking depth phases with deep learning. IUGG, Berlin, Germany.
Münchmeyer, J., Giffard-Roisin, S., Malfante, M., Marsan, D., & Socquet, A. (2023). Detecting low-frequency earthquakes with deep learning. EGU General Assembly 2023, Vienna, Austria. (Poster)
Tilmann, F., Bornstein, T., Saul, J., Münchmeyer, J., Beutel, M. (2023). Employing machine learning pickers for routine global earthquake monitoring with SeisComP: What are the benefits and how can we quantify the uncertainty of picks? EGU General Assembly 2023, Vienna, Austria. (Poster)
Bornstein, T., Lange, D., Münchmeyer, J., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I. & Tilmann, F. (2023). PickBlue: Seismic phase picking for ocean bottom seismometers with deep learning. EGU General Assembly 2023, Vienna, Austria.
2022
Münchmeyer, J., Bornstein, T., Lange, D., Woollam, J., Rietbrock, A., Barcheck, G., Grevemeyer, I. & Tilmann, F. (2022). Phase Picking on OBS Data with Deep Learning: Bringing SeisBench to the Ocean Bottom. AGU Fall Meeting 2022, Chicago, USA.
Münchmeyer, J., Woollam, J., Giunchi, C., Jozinovic, D., Diehl, T., Saul, J., Michelini, A., Haslinger, F., Lange, D., Rietbrock, A., & Tilmann, F. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. AGU Fall Meeting 2022, Chicago, USA. [invited]
Münchmeyer, J. (2022). SeisBench: Benchmarking and applying deep learning based phase pickers. STATSEI12, Cargése, Corsica, France.
Münchmeyer, J. (2022). Accelerating machine learning development and deployment in seismology through standardisation. 3ECEES, Bucharest, Romania. [invited talk]
Münchmeyer, J., Woollam, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J. & Soto, H. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. EGU General Assembly 2022, Vienna, Austria.
[abstract]
Woollam, J., Münchmeyer, J., Tilmann, F., Rietbrock, A., Lange, D., Bornstein, T., Diehl, T., Giunchi, C., Haslinger, F., Jozinović, D., Michelini, A., Saul, J. & Soto, H. (2022). SeisBench - A Toolbox for Machine Learning in Seismology. EGU General Assembly 2022, Vienna, Austria.
[abstract]
2021
Münchmeyer, J., Leser, U., & Tilmann, F. (2021). A probabilistic view of earthquake rupture predictability. AGU Fall Meeting 2021, New Orleans, USA.
[abstract]
Woollam, J., Münchmeyer, J., Giunchi, C., Jozinovic, D., Diehl, T., Saul, J., Michelini, A., Haslinger, F., Lange, D., Tilmann, F., & Rietbrock, A. (2021). SeisBench: A Python Toolbox for Benchmarking and Deploying ML Models in Seismology. AGU Fall Meeting 2021, New Orleans, USA.
[abstract]
Münchmeyer, J., Woollam, J., Giunchi, C., Jozinovic, D., Diehl, T., Saul, J., Michelini, A., Haslinger, F., Lange, D., Rietbrock, A., & Tilmann, F. (2021). SeisBench: A framework for machine learning in seismology. General Assembly of the European Seismological Commission. Virtual conference 2021.
Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). Insights into deep learning for earthquake magnitude and location estimation. EGU virtual conference 2021.
[abstract]
Woollam, J., Münchmeyer, J., Giunchi, C., Jozinovic, D., Diehl, T., Saul, J., Michelini, A., Haslinger, F., Lange, D., Tilmann, F., & Rietbrock, A. (2021). SeisBench: A toolbox for benchmarking and applying machine learning in seismology. EGU virtual conference 2021.
[abstract]
Münchmeyer, J., Bindi, D., Leser, U., & Tilmann, F. (2021). The Transformer Earthquake Alerting Model: A Data Driven Approach to Early Warning. SSA virtual conference 2021.